ASPEN: EO-1 Mission Activity Planning Made Easy

Rob Sherwood, Anita Govindjee, David Y an,
Gregg Rabideau, Steve Chien, Alex Fukunaga
Jet Propulsion Laboratory
Cdlifornia Institute of Technology
Pasadena, California 91109
aspen @aig.jpl.nasa.gov

ABSTRACT

This paper describes the application of an automated

planning and scheduling system to the NASA Earth
Orbiting 1 (EO-1) mission. The planning system,

ASPEN, is used to autonomously schedule the daily
activities of the satdllite. The satellite and operations
constraints are encoded within a software model used
by the planner. This paper includes a description of the
planning system and the associated modeling language.

We then discuss how we encoded the EO- 1 spacecraft

operations with the modeling language. We conclude
with a description of the end-to-end planning system as
we envision it for EO-1.

INTRODUCTION

Automated planning/scheduling technologies
show great promise in reducing operations costs
by increasing autonomy of EO-1 mission
operations. The Artificia Intelligence (Al) Group
at the Jet Propulsion Laboratory’ has been
working on a system called ASPEN (A Scheduling
and Planning Environment). ASPEN [Fukunaga
et a. 1997) is a modular, reconfigurable
application framework based on Al techniques
[Allen et al. 1990, Zweben & Fox 1994], which is
capable of supporting a variety of planning and
scheduling applications (similar to [Smith et al.
1996]), The primary application area for ASPEN
is the spacecraft operations domain.

EO-1 [Speer e a, 1997] is an Earth imaging
satellite to be launched in May 1999. The science
payload on EO- 1 is an advanced multi-spectral

This paper describes work performed by the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National

Aeronautics and Space Administration.

This paper is submitted to the NASA Workshop
on Planning and Scheduling for Space.
‘ For an overview of Artificial Intelligence work at
JPL see [Chien et a. 1997].

imaging device. Mission operations on EO- 1
consist of managing spacecraft operability
constraints such as power, thermal, pointing,
buffers, consumables, and telecommunications.
EO- 1 science goals involve imaging of specific
targets within particular observation parameters.
Of particular difficulty is managing the downlinks
since the amount of data generated by the imaging
device is quite large and ground contacts are
limited. In addition, because science targets for
EO- 1 are based on short-term cloud predictions,
schedules must be generated daily.

Planning and scheduling spacecraft operations
involves generating a sequence of low-leyel
spacecraft commands from a set of high-level
science and engineering goals. ASPEN encodes
spacecraft operability constraints, flight rules,
spacecraft hardware models, science experiment
goals, and operations procedures to alow for
automated generation of low-level spaccc;aft
sequences. By automating the command scqucn;;c
generation process and by encapsulating the
operations specific knowledge, ASPEN wﬂl
enable EO-1 spacecraft commanding by a small
operations team and thereby reduce costs.

ASPEN

ASPEN is an object-oriented system that provides
a reusable set of software components that
implements the elements commonly found in
complex planning/scheduling systems. These
include:

* An expressive constraint modeling language
to allow the user to naturally define the
application domain;

* A constraint management system for
representing and maintaining spacecraft
operability and resource constraints, as well
as activity requirements,

= A temporal reasoning system for expressing
and maintaining temporal constraints; and

= A graphical interface for visualizing
plans/schedules (for use in mixed-initiative
systems in which the problem solving process
iSinteractive).

The central data structure in ASPEN is an activity.
An activity represents an action or step in a
plan/schedule. An activity has a start time,

1 Activity ALI_data_take {
2 Fixed fi;

3 Tracking tr;

4 Duration = [1 ,60];

5 Constraint =
6

7

8

14 Activity SAD_changer {
15 Sad_mode sadl;

18)

starts _ after end of SAD_changer with (fi->sad1) by [100,300],
ends_before start of SAD_changer with (tr->sad1) by[16, 16],
Contains both of SAD_user with (fi->ap1) by [4,4,0,10],

9 Contained_by both of SAD_user with (fi->sad1) by [300,300,1,1 6];
10 Subactivities = ALI_user_data, ALI_dark_count;

1 Simple_reservations = processor, array_power = 80;

12}

13

16 Simple_reservations == solar_array change_to sadl,
17 aperture must_be lopen;

Figure 1 Activity Example

an end time, and a duration, Activities can use
one or more resources. For more details on
ASPEN, see [Fukunaga et al 1997].

MODELING LANGUAGE

The ASPEN modeling language allows the user to
define activities, resources, and states as described
above. A domain model is input at start-up time,
so modifications can be made to the model
without requiring ASPEN to be recompiled. The
modeling language has a simple syntax, which can
easily be used by spacecraft mission operations
personnel to create a model. Each spacecraft
model is comprised of several plain-text files such
as an activities. mdl file, etc. Activities, resources,
and states are defined in .mdl files and then
instantiated in .ini files.

Activities

As mentioned above, activities are the central data
structure of ASPEN. An activity is a data
structure that performs a specific function.
Activities are generally defined in the
activities.mdl file. The example in Figure 1
includes an instrument data take activity and a
solar array drive state change activity. These
examples will be used to explain the components
of an activity.

An activity is defined in line 1 and 14 of Figure 1.
The definition includes the name followed by a
pair of braces and a semi-colon similar to the C
language syntax. These are the only required
components of an activity definition. Once the
activity is defined, it can be instantiated in the
initial state file. Generaly, this instantiation will

consist of just the activity name followed by the

instantiated name and a pair of braces. Many of
the components below that are specified as ranges
can be fixed to specific values in the activity
instantiation.

Parameters are generally used to pass values to
subactivities (child activities) or reservations.
Lines 2 and 3 contain parameters defined in the
parameters.mdl file. In this case, they are
constants that represent state names, Parameters
can aso be passed into activities from higher level
activities (parent activities). Line 15 contains an
example of a parameter that is passed into an
activity. The parameter sad_mode is an
enumerated type variable that contains the list of
states for a solar array drive. Any one of the
states can be passed into the SAD_changer
activity when called from a parent activity.

The duration of an activity is given as arange [X,
y], alist (& b, ¢, d] or a constant. Line 4 defines
the duration as a range of 1-60 seconds. The time
scale of the spacecraft mission planning can also
be specified. All ranges within ASPEN can be
specified from zero to infinity. If arange is given
for the duration, ASPEN will have more flexibility
in considering different schedules. This can result
in better optimized schedules,

Constraints are temporal constraints a child
activity must satisfy with respect to the parent
activity in which they are defined. When a
constraint is defined, an instantiation of a child
activity is created. There are six types of
constraints: starts_before, starts_after,
ends_ before, ends_ after, contains both of, and
contained by. The first four constraint types
include a time range and a temporal relationship
to the start of or end of the activity in question.
For example, on line 6 in Figure 1, the
ALI_data_take activity must start after the end of
the SAD_changer activity by 100-300 seconds.
This constraint tells the scheduler that the
SAD_changer activity must be completed at least
100 seconds before the ALI_data_take activity
starts. Using the same method, the start or end
time of any child activity can be” specified relative
to the start or end time of the parent activity. If
the time duration is specified as [0,0], the start or
end times will coincide exactly.

The [contains both of] constraint is used for child
activities that fall within the parent activity. This
constraint definition combines a starts_before start
of and an ends_ after end of pair of constraints.
For example, line 8 defines a constraint for child
activity SAD_user that is contained within parent
activity ALI_data_take. The first two and last two
numbers in the constraint represent ranges of time
which separate the start times between the two
activities and the end times between the two
activities. SAD_user must start exactly four

AlLI_data_take

SAD_user
0

seconds (4,4) after the start of ALI_data_take but
the end time can coincide with the end time of
ALI_data_take or up to 10 seconds (O, 10) earlier.
This relationship is graphically represented in
Figure 2.

The [contained_by both of] constraint is used for
child activities that are the same size or larger than
the parent activity. For example, line 9 defines a
congstraint for activity SAD_user that starts exactly
300 seconds before the start of and ends 1-16
seconds after the end of activity ALI_data_take.

Subactivities are child activities that can be
scheduled any time within the parent activity
subject to resource constraints within the
subactivity. Subactivities are similar to the
constraint-defined activities above without the
exact tempora relationship between the parent
and child activities. For example, line 10 defines
subactivities ALI_user_data and AL]_dark_count.
These activities must fall within the temporal
range of the parent activity ALI_data_take.

Reservations are used to reserve a portion of a
resource or state for the duration of the activity.
There are two types of resource reservations:
atomic and non-atomic. Line 11 of Figure 1
contains examples of an atomic reservation
(processor) and a non-atomic reservation
(array_power). The processor reservation
reserves the processor for the duration of the
activity. No other activities can use the processor
during this time. The array_power reservation
uses 80 units of array_power for the duration of
the activity. If the array_power were a depletable
resource, the 80 units would be reserved from the
start of the activity until the end of the planning
horizon.

State reservations either change the state of a state
variable or reserve a state for the duration of an
activity. Line 16 of Figure 1 changes the state of

50 60

. 4
Time ——p—0n

Figure 2 Constraint Relationship: contains both of

the SAD state variable to the value of parameter
sad1l. Line 17 of Figure | reserves the “open”
state of the aperture state variable for the duration
of the activity. If the aperture state variable was in
a state other than “open” prior to this activity, the
state is changed to “open” by the reservation.

Resources

Resources are items that can be scheduled. There
are four types of resources: atomic, concurrency,
depletable, and non-depletable. Atomic resources
are physical devices that can only be used
(reserved) by one activity at a time, Examples of
atomic resources include: science instrument, star
tracker, reaction wheel, or CPU. Concurrency
resources are similar to atomic except they must
be made available to the activity before they are
reserved. An example would be a
telecommunications downlink pass. The
telecommunications station would have to be
made available before the spacecraft could initiate
a downlink. Non-depletable resources are
resources that can used by more than one activity
at a time and do not need to be replenished. Each
activity can use a different quantity of the
resource. Examples include solar array power and
1773 bus. Depletable resources are similar to
non-depletable except that their capacity is
diminished after use. In some cases their capacity
can be replenished (battery energy, memory
capacity) and in other cases it cannot (fuel). A
summary of the four types of resources is
presented in Table 1.

Resources are contained in the resources.mdl file.
The four types of resources are defined in lines 1,
6, 12, and 18 of Figure 3. The definition includes
the name followed by a pair of braces and a semi-
colon similar to the C language syntax. The type
is one of: atomic, concurrency, depletable and
non-depletable. The name and type are the only
required components of a resource definition.
Once the resource is defined, it can be instantiated
in the initial state file. Generaly, this instantiation
will consist of just the resource name followed by
the instantiated name and a pair of braces. Note:
concurrency resources are not yet implemented.

The capacity of a resource can be specified as a
constant, list or range. A range would be used if
several similar resources with specific capacities
were defined when the resources were
instantiated.

Resour ce Properties
| Type
| Atomic Always available when not in

use, only luser at atime
Ex: science instrument, star
tracker, reaction whedl, cpu

Concurrency Only available when made
available, only 1 user at atime
Ex: telecommunications
downlink pass

Non-depletable | Always available when not in
Use, many Users can use
different quantities
Ex: solar array power and
1773 bus

Depletable Capacity is diminished after
use, may or may nhot be
replenished by another activity
Ex: battery energy, memory
capacity, fuel

Table 1 Resource Types

1 Resource ALI {

2 Type = atomic;

3 Capacity = 1;

4)%

5

6 Resource Solar_array (

7 Type = non_depletable;

8 Capacity = 600; // watts

9 Min_capacity = O;

10 };

il

12 Resource warp_storage {
13 Type = depletable;

14 Capacity = 40000; // Mbits
15 Min_capacity = O;

16);

17

18 Resource Propellant (

19 Type=depletable;

20 Capacity = 15; // 15kg
21 Min_capacity = O;

22);

Figure 3 Resource Examples

An atomic resource has a unit capacity and does
not have to be explicitly set such as on line 3 of
Figure 3. Depletable and non-depletable
resources definitions can contain a minimum
capacity such asinlines 9, 15, and 21 of Figure 3.

1 State_variable ALI_sv (

2 states = (“data’, “standby”, “idle”, "oft");

3 transitions = (“standby”-> >"data”, “data’ -> *standby", “idle’’-> "’ standby”,
"standb y"->“idle" “off "->"idle", - idlei->loft");

4 default_state = “idle”;

5 %

6

7 State_variable aperture_sv (

8 states = (“open”, “closed"),

9 transitions = (“open”-> “closed”, ‘ closed”’-> “open”);

10 default_state = “closed”;

11 };

Figure 4 State Variable Examples

Sates

A device, subsystem, or system may be
represented by a state variable that gives
information about its current operation. The state
variable contains the current state, which is
defined as an enumerated type. Some examples of
possible states are: on, off, open, closed, record,
playback, standby or idle. States can be reserved
or changed by activities. A state variable must
equal some state at every time. At the beginning
of a planning horizon, this state is just the default
state. Figure 4 contains two examples of state
variable definitions, State variables are defined in
the state-variables. mdl file.

A state variable is defined in lines 1 and 7 of
Figure 4. The definition includes the name
followed by a pair of braces and a semi-colon
similar to the C language syntax. Lines 2 and 8
contain a list of the states the state variable can
contain. The default state must be defined and
must be one of the states in the list. Once the state
variable is defined, it can be instantiated in the
initial state file.

The dlowable state transitions between states can
be indicated using the transitions keyword with a
forward (->) arrow, a hi-directional arrow (<->),
or with the “all” keyword (e.g., all<->all).

Parameters

The ASPEN modeling language includes
parameters, which are variables or constants.

Parameters can consist of integers, strings, floats,
or lists. Parameters can be defined as enumerated

types for a list of states in a state variable. Ranges

of values can also be used. Some examples are:

. parameter string ALI_mode { domain =
(“data’, “idle”, “standby”, “off *););

+ parameter int warprange (domain =
[1,40960];);

In the first example, the ALI_mode parameter can
take on any of the four values in the list. In the
second example, the warprange parameter can be
any integer in the indicated range from 1. to
40960. o

EO-1 MODEL ,

0l
EO- 1 is an Earth imaging satellite that is part of
the New Millennium Program of technology
validation missions. The NASA Goddard Spare
Flight Center is responsible for project
management. The purpose of EO- 1 is to vaidate
new technologies that can be used on future
Landsat class Earth remote sensing missions. In
fact, EO-1 will be flying in formation one minute
behind Landsat-7, with the goal of imaging as
many of the same targets as possible. EO- 1 will
be using the Landsat 7 daily scene list as an input
file of potential EO- 1 targets.

The main activity in EO- 1 operations is the
Advanced Land Imager (AU) data take. The ALI
instrument contains six separate detectors that
output data simultaneously. One image takes a
total of 24 seconds and consumes about 19
gigabits of data in the solid state recorder
(WARP). Because the capacity of the WARP is
only 40 Gbits, it is important to plan the data takes
and downlinks to maximize the amount of data
returned. Due to limited amount of downlink time
available, only four data takes per day can be

taken. Data takes can be prioritized based on the
following parameters:

* Cloud cover over the region to be imaged

* Sun angle at the region to be imaged

« Ability to return the data before overflowing
the WARP recorder

* Images coinciding with Landsat 7 images

= Imaging of scientifically interesting areas

Each EO- 1 data take has several conditions that
must be satisfied before and after (he data take
occurs. These conditions are listed below:

Before:

. Change the ACS mode to science

®= Change the solar array to a fixed orientation
s Open the ALI aperture

* Change the data rate to high rate mode

After:

. Close the ALI aperture
Take one second of calibration data

* Change the ACS, solar array, and data rate
modes back to the previous values

Each of these conditions is modeled as temporal
congtraints in the ALI data take activity. The data
take activity itself is only a 24-second activity.
The constraints on the activity span a period of
five minutes before and one minute after the
bounds of the activity. The constraints on the
activity could have been modeled as activity
decompositions. The reason we chose to model
these activities as constraints is to ensure they
would move with the parent activity if the parent
activity were moved. The data take activity
breaks down into 14 separate activities as listed in
Figure 5.

The ALI must be calibrated by viewing the sun or
the moon regularly. The sun calibration involves
pointing at the sun and changing the aperture filter
several times. The moon calibration points at the

ALI Scene Collection

AlLl_data_take aperture_changer
ALl_user_data engdata_user
ALI_user_standby engdata_changer
ALI_changer ACS_user

SAD_user ACS_changer
SAD_changer cloud_cover_changer
aperture user sun angle changer

Figure 5 EO-1 Science Activities

lunar limb and pans across the moon using each of
the detectors. Similar to the data take activities,
the calibrations involve several constraints. The
calibration activities and constraints are listed in
Figure 6.

EO- | communication activities are modeled as
follows:

1, An input file gives the times at which the
ground station isiin view of the satellite.

2. The in view times are converted into a state
variable with the vaue “inview” or
“outview ”

3. The planner chooses communication links
during these in view times.

4. The communication link is broken down into
uplinks (if required) and downlinks.

The EO- 1 model also includes initialization
activities for power, propellant, and memory.
These activities are used to keep track of
consumable resources from the previous planning
period.

A keyword “command” is used for activities that
represent an EO- 1 spacecraft command. When
the command keyword is included in the activity
definition, along with the command name, the
spacecraft command output file will include a time
tagged command for that activity.

The EO- 1 spacecraft resources are modeled as
either depletable or non-depletable. It was not
necessary to model every physical device on EO- 1
because many devices consumed a constant power
and did not interact with any spacecraft activities.
The power of these devices is included in the
power_init activity. The resources that are
modeled are listed in Figure 7.

ALl Calibrations
ALl sun_calibration
slew_to_sun
aper_test_changer
ALI_moon_calibration
moon_cal_ms_pan
slew_to_moon
ramp_wp_pitch_slew
ramp_down_pitch_slew

rolll_tog nestt position

Figut 6 EO-1 Calibration Activities

Resouj ces

Non-Depletable Depletable
ALl Battery
S_band_Receiver Warp_storage
Transponders Propellant
solar_array
ACDSE
Warp
Processor
Bus_1773

Cat_bed_heater
WFF
DSN

The EO-1 ASPEN model has ten different state
variables which are listed in Figure 8. Most of
these state variables are used to represent the state
of a spacecraft resource. The states are used in
activities that require a resource to bein a
particular state. These requirements are specified
1 the reservations of the activity. For example,
the EO-1 data take activity requires the WARP
state variable to be in record mode during the
period of imaging. This requirement ensures that
the data is being recorded during the imaging
operation. Activities are defined that either
change or use a particular state of a state variable.
These activities usually contain a command
keyword that corresponds to an EO- 1 spacecraft
command. ;

Figure 7EO-1 Resources

State Variables

Variable Possible States
ALI_sv data, standby, idle, off
SAD_sv off, tracking, fixed
| aperture_sv, open, closed
| aperture_test_sv__| small, reed, large, blank
| engdata_sv high, low
ACS_sv nadir, low_jitter, standby,
safe, orbit_adjust,
WARP sv off, idle, record, playback

low, med_low, reed,

med_high, high, none

| Sun_Angle_sv low, reed, high, none
WFF_inview_sv__| in, out

Figure 8 EO-1 State Variables

Cloud_Cover_sv

END-TO-END PLANNING SYSTEM

The goa of this EO- 1 work is to produce an
automated on-board planning system for
spacecraft commanding of the EO- 1 satellite. The
system would be validated after launch on the
ground. As a ground based planner, the inputs to
ASPEN include:

* Landsat-7 cloud cover and sun angle
predictions.

* Current power, propellant, and memory
levels.

* Sun, moon, and sky calibration requests.

* Ground station view files.

+ Maneuver requests.

The output of the ground based validation of the
planner would be a text list of time tagged
commands that would be trandlated into binary
spacecraft command by the ground system |oad
generation utility. This utility is already built into
the EO- 1 ground system.

The on-board planning system would require

uploads of the ground station view files and
maneuver requests. The cloud cover could be

obtained by using the ALI science instrument to
examine the clouds before a scene. After the
image is taken, the cloud data would be analyzed
to determine if the scene should be saved and
downlinked. Clouded scenes would be erased
from the WARP and a new scene would be
planned to take its place.

EO-1 Model in Action

Generating EO- 1 mission operations schedules is
a fast process. Given a set of EO-1 requests,
ASPEN will generate a conflict-free schedule
within the order of a few minutes for lengthy
schedules, and within seconds for simpler

schedules.

In addition to having the activity requests
specified in advance, the user can make changes
to the schedule from the GUI as needed. For
example, the user could add an ALI_data_take
activity. If this caused conflicts in the schedule,
then ASPEN would resolve the conflicts. This
whole process takes seconds to execute.

CONCLUSIONS

Modeling EO- 1 mission operations in ASPEN is
easy and compact. The entire EO- 1 model
consisting of the activitiess, parameters,
reservations, resources, and state variables as
described above, is represented in approximately
700 lines (in plain text files) which aso includes
comments and headers. The simplicity of the
modeling language will alow the operations
personnel to easily change the model when
needed. The changes will not require a recompile
of the code.

We have successfully modeled EO- 1 mission
operation activities with ASPEN. We have
created @ model which encapsulates information
about: data takes, calibration activities,
maneuvers, uplinks, downlinks, validation
activities, cloud cover and sun angle states, and
initialization activities of power, propellant, and
data storage. Using this model with ASPEN will
enable EO- 1 to function with a very small
operations team.

REFERENCES

J. Allen, J.Hendler, and A. Tate 1990. Readings
in Planning. Morgan Kaufmann.

S. Chien, D. Decoste, R. Doyle, and P. Stolorz
1997. Making an Impact: Artificial Intelligence
at the Jet Propulsion Laboratory. Al Magazine,
18(1):103-122.

A. Fukunaga, G. Rabideau, S. Chien, and D. Yan
1997. ASPEN: A Framework for Automated
Planning and Scheduling of Spacecraft Control
and Operations. In Proceedings of the
International Symposium on Al, Robotics and
Automation in Space(i-SAIRAS), Tokyo, Japan.

S.F. Smith, O. Lassila, and M. Becker 1996.
Configurable mixed-initiative systems for
planning and scheduling. In A. Tate, editor,
Advanced Planning Technology. AAAI Press.

D. Speer, P. Hestness, M. Perry, and B. Stabnow,
“The New Millennium Program EO- 1 Mission
and Spacecraft Design Concept,” In Proceedings
of the IEEE Aerospace Conference, v. 4, pp. 207-
227, Snowmass, CO, 1997.

M. Zweben and M. Fox 1994. Intelligent
Scheduling. Morgan Kaufmann.

